Forschungsprojekte mit Beteiligung von Jan Krügener

  • Cost-efficient High-throughput Ion-Implantation for Photovoltaics - CHIP
    Im Rahmen des Verbundprojekts CHIP soll die Technologie der Ionen-Implantation und deren Anwendbarkeit für die Herstellung von kristallinen Siliziumsolarzellen untersucht werden. Hierzu werden zusammen mit dem Projektpartner ISFH hocheffiziente PERT-Solarzellen (Passivated Emitter and Rear Totally Doped) auf monokristallinen n-Typ Wafern hergestellt, bei denen mittels Ionen-Implantation die Vorderseite lokal selektiv p-hochdotiert und die Rückseite selektiv n-hochdotiert ist. Als Dotierstoffe werden dabei Phosphor und Arsen für die n-Hochdotierung und Bor für die p-Hochdotierung in unterschiedlichen Zusammensetzungen untersucht. Der für die Ausheilung der durch die Ionen-Implantation hervorgerufenen Schädigungen notwendige Temperaturschritt ist ein damit eng verbundenes Untersuchungsziel des Projekts. Hier soll ein Prozess gefunden werden, welcher beide Dotiertypen gleichzeitig ausheilen kann. Dazu werden verschiedene Temperaturprozesse miteinander verglichen, welche sich hauptsächlich in Dauer und Temperaturverlauf unterschieden.
    Leitung: J. Krügener
    Team: A. Klatt, M. Jestremski
    Jahr: 2012
    Förderung: Bundesministerium für Wirtschaft und Energie (BMWi)
    Laufzeit: Juli 2012 - Juni 2015
  • Optionen zur Realisierung von Si-Solarzellen mit Effizienzen über 26%
    Im Rahmen des „26+“-Projekts sollen „Leuchtturmeffizienzen“ von über 26% erreicht werden. Aktuell wäre dies ein neuer Wirkungsgradrekord für Si-Solarzellen mit nur einem pn-Übergang. Während der Projektlaufzeit sollen „Schlüsselschritte“ in der Prozesssequenz mit industrierelevanten Verfahren realisiert werden, so dass die deutsche PV-Industrie zeitnah von dem in „26+“ generierten Wissen profitieren kann.
    Leitung: J. Krügener
    Jahr: 2015
    Förderung: Bundesministerium für Wirtschaft und Energie (BMWi)
    Laufzeit: 01.07.2015 - 31.12.2018
  • Einsatz von hocheffizienten Solarzellen in elektrisch betriebenen Nutzfahrzeugen - Optimierung des transienten Schaltverhaltens von Zellen mit integrierten Bypassdioden
    Obwohl Vehicle-Integrated Photovoltaic (VIPV) kein neues Forschungsfeld ist und für Verbrennungsmotor-betriebene Fahrzeuge schon evaluiert wurde, gewinnt es durch die steigende Bedeutung von Elektromobilität, das im Pariser Klimaabkommen vereinbarte Ziel einer CO2-Einsparung von 40% bis 2020 (gegenüber 1990), sowie durch die fortschreitende Preisreduktion in der Photovoltaik ein völlig neues Momentum. Gerade für Lieferfahrzeuge, die in derzeit Feinstaub-geplagten Innenstädten unterwegs sind, eine große Dachfläche aufweisen und ein Fahrprofil mit vielen Standzeiten absolvieren, kann die photovoltaische Energiekonversion einen signifikanten Anteil der benötigen Energie bereitstellen.
    Leitung: Prof. R. Peibst
    Team: G. Wetzel, R. Zieseniß
    Jahr: 2018
    Förderung: Bundesministerium für Wirtschaft und Energie
    Laufzeit: 01.08.2018 - 31.07.2021
  • Nanowire Field Effect Transistor with epitaxial Gd2O3 as wraparound gate oxide
    In this project, which is being carried out together with colleagues from the Indian Institute of Technology Bombay (https://www.iitb.ac.in/), the aim is to use functional epitaxial oxides for the production of Gate All Around (GAA) transistors. Nanowires of gallium nitride, which have extremely high charge carrier mobilities, are to be used as channel material. Within the framework of this project, the MBE will carry out the epitaxial growth of the oxide layers, while the IITB partners will manufacture the nanowires and electrically characterise the structures.
    Leitung: Prof. H. Jörg Osten
    Jahr: 2020
    Förderung: DAAD
    Laufzeit: 2020 - 2023
  • Understanding and engineering polysilicon based passivating contacts for photovoltaic applications
    In this project, which is being carried out jointly with colleagues from the Australia National University in Canberra (https://www.anu.edu.au/), the aim is to investigate passivating contacts based on polycrystalline silicon. Such contact structures consist of a thin silicon oxide that is produced either chemically or dry thermally on a silicon wafer. A thin layer of polycrystalline silicon is deposited on this oxide. Understanding the function and high-quality production of such contact structures have been the subject of research at MBE for many years. Within the framework of this project, the long-term stability and the ability of the polycrystalline silicon to bind metallic impurities or to deactivate them electrically are to be investigated.
    Leitung: Dr.-Ing. Jan Krügener
    Jahr: 2023
    Förderung: DAAD
    Laufzeit: 2023 - 2024
  • Herstellung und Charakterisierung photonischer Strukturen für die Anwendung in zukünftigen Siliziumsolarzellen
    Moderne Siliziumsolarzellen erreichen heute Rekordwirkungsgrade von bis zu 26,8 %. Wesentliche Limitierungen gegenüber dem theoretischen Limit für Siliziumsolarzellen von ca. 29,5 % sind die intrinsischen Rekombinationsverluste im Siliziumvolumen sowie die Rekombination an Oberflächen und Kontakten. Letztere konnten in den vergangenen Jahren durch Einführung sehr effektiver selektiver Kontaktschichten drastisch reduziert werden. Eine Reduktion der unvermeidbaren intrinsischen Volumenrekombination kann nur mithilfe dünnerer Silizium-Wafer erreicht werden, was jedoch einen direkten negativen Einfluss auf die erreichbare Photostromdichte und somit auf die Effizienz der Solarzelle hat, da das für die Photoabsorption zur Verfügung stehende Volumen des Silizium-Absorbers bei Verringerung seiner Dicke ebenfalls reduziert wird. Seit einigen Jahren werden Strukturen auf der Basis photonischer Kristalle untersucht, die es erlauben, auch mit dünneren Silizium-Wafern hohe Photostromdichten zu erzielen. Wie theoretisch gezeigt werden konnte, erlauben photonische Kristalle auf der Vorderseite von Silizium-Solarzellen eine erhöhte Absorption des einfallenden Lichts und ermöglichen so deutlich erhöhte Photoströme und damit höhere Wirkungsgrade als es das klassische theoretische Limit vorhersagt. Die vor diesem Hintergrund bislang untersuchten photonischen Kristalle bestehen aus regelmäßig angeordneten invertierten Pyramiden mit Kantenlängen von wenigen Mikrometern. Die Herstellung der invertierten Pyramiden wird dabei mithilfe von selektiven stark anisotropen nasschemischen Ätzprozessen durch eine Maske aus Siliziumoxid erreicht. Auf Labormaßstab konnten in einer Kooperation zwischen MBE und ISFH bereits erste Solarzellen mit photonischen Kristallen auf den Vorderseiten hergestellt werden. Diese waren jedoch noch limitiert durch lokale Inhomogenitäten im Herstellungsprozess der regelmäßigen invertierten Pyramiden. Im Rahmen der hier geplanten Projektes sollen zunächst Bedingungen etabliert werden, die eine definierte Herstellung großflächiger photonischer Kristalle auf Silizium ermöglichen. Hierzu existieren am MBE bereits erste Vorarbeiten, die auf dem Strukturübertrag mittels konventioneller Fotolithografie basieren. Der so erarbeitete Prozess soll dann systematisch variiert und die hergestellten Strukturen anschließend optisch (Transmission, Reflexion) und strukturell (Rasterelektronenmikroskop, Rasterkraftmikroskop) charakterisiert werden. Die so erreichten Ergebnisse sollen genutzt werden, um das realistisch erreichbare Effizienzpotential von Siliziumsolarzellen mit photonischen Kristallen besser abschätzen zu können. Zusätzlich sollen neue Teilprozesse entwickelt werden, die die Herstellung photonischer Kristalle verbessern können. Hierzu gehört zum Beispiel das Ersetzen der Fotolithografie durch Laserlithografie oder auch die Nutzung von Trockenätzprozessen anstelle der bislang verwendeten nasschemischen Herstellung. Perspektivisch können die im Rahmen dieses Projektes hergestellten Solarzellen mit photonischen Kristallstrukturen auch als Bottomzellen für Tandemzellen verwendet werden.
    Leitung: Dr.-Ing. J. Krügener
    Jahr: 2024
    Förderung: Niedersächsisches Ministerium für Wissenschaft und Kultur
    Laufzeit: 2023 - 2027
  • PECVD-basierte SiC-Schichten als transparenter passivierender Vorderseitenkontakt in TCO-freien, höchsteffizienten, Al-metallisierten und mittels umweltverträglicher Nasschemie-Additiven hergestellten POLO- Solarzellen - SiC & POLO
    Im Projekt "SiC & POLO“ haben sich mit centrotherm, ICB, der Universität Konstanz und dem MBE Verbundpartner zusammengeschlossen, um höchstselektive und passivierende Kontakte auf Basis von Siliziumkarbid herzustellen. Die beteiligten Projektpartner bringen alle erforderlichen Kompetenzen komplementär mit in das Projekt ein: centrotherm wird sich auf die Prozessentwicklung zur SiC-Abscheidung konzentrieren. ICB wird Additive für eine optimierte Oberflächentextur und Ätzlösungen zur Entfernung von Randumgriffen mit hoher Selektivität entwickeln und die Umweltverträglichkeit der Additive weiter verbessern. Die Universität Konstanz wird die optische Schicht-Charakterisierung, die Entwicklung der Siebdruckkontaktierung sowie die Solarzellenintegration übernehmen, und das MBE wird die elektrische Schichtcharakterisierung durchführen sowie mithilfe von strukturellen und elektronischen Untersuchungen Limitierungen aufklären und so die Entwicklungen lenken.
    Leitung: J. Krügener
    Team: S. Börnert
    Jahr: 2024
    Förderung: Bundesministerium für Wirtschaft und Klimaschutz (BWMK)
    Laufzeit: Oktober 2024 - September 2027
  • Breaking limits Using Record enabling Silicon Technology with photonic management - BURST
    Die Silizium-PV-Technologie bewegt sich auf Produktionskapazitäten im TW-Maßstab zu und ermöglicht den Übergang zu einem sauberen Energiesystem und einer klimaneutralen Wirtschaft. Unter den verschiedenen PV-Technologien auf Siliziumbasis werden Silizium-Solarzellen mit ineinandergreifenden Rückkontakten (interdigitated backcontacts, IBC) voraussichtlich die höchsten Wirkungsgrade bei der Energieumwandlung erzielen. Dennoch sind die Kosteneffizienz und die Anwendbarkeit dieser vielversprechenden Technologie noch stark ausbaufähig, da die Dicke des Absorbermaterials bei maximaler Leistung reduziert werden kann. Dies ist eine große Herausforderung, die durch die Erhöhung der Absorptionsdichte der Zellen mit Hilfe optischer Strategien und fortschrittlicher Passivierungsverfahren angegangen werden kann. Die steigende Nachfrage nach ultradünnen Solarzellen, die Vorteile wie einen geringeren Materialverbrauch, der zu einer verbesserten Lebensdauer führt, eine Gewichtsreduzierung und potenzielle mechanische Flexibilität für erweiterte Anwendungsmöglichkeiten bieten, hat umfangreiche Forschungsarbeiten zur Bewältigung dieser Herausforderung angestoßen. Im Rahmen des BURST-Projekts hat sich ein Verbund aus Industrie- (NinesPV, HOLO/OR und BENKEI) und Forschungsunternehmen (ISFH, TU Delft, LUH, ISC Konstanz und CEA) zusammengetan, um zukünftige IBC-Solarzellen noch besser und kosteneffizienter zu machen.
    Leitung: J. Krügener
    Team: A. Haller
    Jahr: 2024
    Förderung: Horizon Europe
    Laufzeit: Mai 2024 - April 2027

Zeige Ergebnisse 1 - 2 von 2

FuturePV: Graduiertenkolleg: Grundlagen für Photovoltaik-Technologien der Zukunft

Schmidt, J. (Projektleiter/in (Principal Investigator)), Mertens, A. (Leitende(r) Forscher/-in (Co-Principal Investigator)), Krügener, J. (Leitende(r) Forscher/-in (Co-Principal Investigator)), Brendel, R. (Leitende(r) Forscher/-in (Co-Principal Investigator)) & Schöber, V. (Koordination)

1 Dez. 202330 Nov. 2027

Projekt: Forschung

PhoenixD: Exzellenzcluster 2122, Task Group M6: Photonics and Electronics Integration

Günther, A. (Leitende(r) Forscher/-in (Co-Principal Investigator)), Krügener, J. (Leitende(r) Forscher/-in (Co-Principal Investigator)), Mehlstäubler, T. (Leitende(r) Forscher/-in (Co-Principal Investigator)), Overmeyer, L. (Leitende(r) Forscher/-in (Co-Principal Investigator)), Wicht, B. (Leitende(r) Forscher/-in (Co-Principal Investigator)) & Zopf, H. M. (Leitende(r) Forscher/-in (Co-Principal Investigator))

1 Jan. 201931 Dez. 2025

Projekt: Forschung

URL: https://www.phoenixd.uni-hannover.de/en